
Algorithms for Dynamic Geometric Problems over Data
Streams

Piotr Indyk∗

CSAIL MIT

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity.

General Terms
Algorithms, Theory.

1. INTRODUCTION
Computing over data streams is a recent phenomenon that

is of growing interest in many areas of computer science,
including databases, computer networks and theory of algo-
rithms. In this scenario, it is assumed that the algorithm
sees the elements of the input one-by-one in arbitrary order,
and needs to compute a certain function of the input. How-
ever, it does not have enough memory to store the whole
input. Therefore, it must maintain a “sketch” of the data.
Designing a sketching method for a given problem is a novel
and exciting challenge for algorithm design.

The initial research in streaming algorithms has focused
on computing simple numerical statistics of the input, like
median [23], number of distinct elements [11] or frequency
moments [1]. More recently, the researchers showed that one
can use those algorithms as subroutines to solve more com-
plex problems (e.g., cf. [13]); see the survey [24] for detailed
description of the past and recent developments. Still, the
scope of algorithmic problems for which stream algorithms
exist is not well understood. It is therefore of importance to
identify new classes of problems that can be solved in this
restricted settings.

In this paper we investigate stream algorithms for dy-
namic geometric problems. Specifically, we present low-storage
data structures that maintain approximate solutions to geo-
metric problems, under insertions and deletions of points
(this is called a turnstile model in [24]). From the data
stream perspective, the stream consists of m operations,
each of them is either Add(p) (that adds p to the current

∗Supported in part by NSF ITR grant CCR-0220280.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04, June 13–15, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

set) or Remove(p) (which removes p from the current set);
the set is initially empty.

The turnstile model has been quite challenging as far as
geometric streaming problems are concerned, e.g., see [24],
p. 23. In this paper we present approximation algorithms
for the following fundamental geometric problems defined
over a set of points P in the discrete d-dimensional space
{1 . . .∆}d:

• Minimum Spanning Tree (MST): find a tree spanning
the points in P with minimum weight1,

• Minimum Weight Matching (MWM): assuming |P | is
even, find a set of |P |/2 node-disjoint edges that min-
imize the sum of the edge weights

• Facility location2 : for a parameter f > 0, find a fa-
cility set F ⊂ P that minimizes the objective f |F | +
C(F, P), where

C(F, P) =
∑
p∈P

min
q∈F

‖p − q‖

• k-median: find a set Q ⊂ {1 . . .∆}d of size k to mini-
mize C(Q,P)

We also point out that the result of Charikar [4] can be
used to obtain an algorithm for the bi-chromatic minimum
weight matching problem, where the P = R ∪ B, and each
of |P |/2 node-disjoint edges are required to have exactly one
node in each of B and R.

For all problems but k-median, we focus on estimating
the cost of the solution, rather than reporting the solution
itself. This is because for those problems, the solution size
is or could be Ω(|P |) which makes it impossible to design
algorithms with sublinear storage. For the case of k-median,
we output the set of medians as well as the (approximate)
solution cost.

An example motivation for these problems in the stream-
ing model is as follows (we focus on the MST problem, since
the arguments hold for other problems as well). Consider a

1Here and in what follows, the weight of an edge between
two points p, q ∈ P is equal to the norm of the vector p− q.
Our algorithm works for any Minkowski norm lp.
2For the facility location problem, we need to assume that
the input consists of distinct points; i.e., no two points over-
lap. To avoid notational complications, we will make this
assumptions for all problems.

373

scenario in which many cheap3 sensors are distributed over
a wide area (e.g., floating in a lake, attached to wild animals
etc). We assume that a sensor is able to measure and trans-
mit its position. Periodically, each sensor updates its posi-
tion, by announcing its old as well as its new coordinates.
To perform any kind of computation or information aggre-
gation, the sensors must maintain an ad-hoc communication
network. To keep the communication cost low, it is natural
if the network topology is based on the MST of the set of
sensors. However, computing MST in a distributed manner
is a fairly complex operation. Thus, instead of recomput-
ing it after every sensor move, it might be advantageous to
keep a sub-optimal communication tree for some time, and
recompute it only if its cost is much higher than the current
MST cost. For this purpose, however, one needs to maintain
the cost of MST, using only the limited resources available
to the sensors.

See [24, 17] and the references therein for further moti-
vation for problems over geometric data streams, as well as
other models of geometric data streams. For more informa-
tion about sensor networks, see [16].

Our results. For simplicity of exposition, we assume
that the dimension d is constant. Together with the as-
sumption of the distinctness of all elements, it implies that
log n = O(log∆), where n is the maximum number of ele-
ments in the set P . All of the algorithms use space that is
polynomial in log∆ (and k, for k-median) All algorithms are
randomized. Other parameters of the algorithms are showed
in the following table.

Although the approximation factor of log∆ can appear
fairly large (especially for problems that are solvable ex-
actly in polynomial time), it is likely that in practice the
actual quality of the reported answers will be much bet-
ter. In particular, the experimental evaluation of a variant
of the algorithm for the bi-chromatic matching [19] shows
that the estimation provided by the algorithm is, for natu-
ral data sets, within 10% of the actual value. We also men-
tion that the approximation factor for facility location can
be improved to O(log∆), but then the analysis is no longer
elegant, so the details are deferred to the final version.

Our techniques. On the high-level, our approach as fol-
lows. Since the dynamic geometric problems over streams
are poorly understood, we show how to reduce them to
problems over high-dimensional vectors. The latter prob-
lems have been extensively studied and many solutions are
known. This yields solutions to the geometric problems.

This general idea is implemented as follows. In the first
step, we impose log∆ randomly shifted, nested square grids
over the point space; the grid cells have side lengths 20, 21, 22 . . .
etc. For each grid, we compute a certain statistic of the dis-
tribution of points in the grid. Let nS(c) be the number of
points in set S falling into cell c. Then:

• To estimate the cost of minimum bi-chromatic match-

3It is natural to ask why can’t the sensors be equipped with
at least a few MB of RAM, to be able to store the coordi-
nates of all sensors. After all, the memory is quite inexpen-
sive. The authors’ answer to this question is: if the sensors
are equipped with anything that can be reused (like large
memory, fast processor, etc), then someone is likely going to
reuse (i.e., steal) them. Thus, it is beneficial if the sensors
have only the minimum capability needed to perform the
designed task.

ing, we compute
∑

c |nB(c) − nR(c)| (the guarantees
for this estimator were essentially proved in [4])

• To estimate the cost of MST, we compute the number
of cells c such that nP (c) > 0

• To estimate the cost of MWM, we compute the number
of cells c such that nP (c) is odd

• To estimate the cost of facility location, we compute∑
c min(nP (c), T), for a parameter T

• To estimate the cost of a given set of medians Q, we
compute

∑
c∩B(Q,r)=∅ nP (c), where B(Q, r) is a union

of balls of radius r around points in Q. Then we find
an approximately optimal set of medians via greedy
algorithm or local search4.

From the above, it suffices to give algorithms for estima-
tion of the respective statistics. Estimating

∑
c |nB(c) −

nR(c)| is equivalent to maintaining the l1 norm of the dif-
ference vector nB − nR, a problem that has been solved
in [18]. Estimating of the number of c’s such that nP (c) > 0
is equivalent to maintaining the number of distinct elements
in a stream [11, 1] (see [8] for a more recent description of
that algorithm). The problem of estimating the number of
odd values of n(c) (we call it Odd-Count) was not investi-
gated earlier in the literature. We show how to solve it by
adapting a method for dimensionality reduction in a hyper-
cube due to [20]. The next problem (that we call Bounded-
Count) was not addressed in the literature either, although
it generalizes the problem of counting the non-zero entries
(for T = 1) or counting the number of elements (for T = ∞).
We provide a novel algorithm for this problem. Finally, the
quantity needed for the k-median problem can be computed
using a variant of an algorithm for the heavy-hitters problem
as in [9].

Except for the last case, the approximation guarantees
of our algorithms are showed by viewing the algorithms as
implementations of the following two stage process:

• Perform low-distortion embedding of the metric de-
fined over the input set P into a probabilistic tree met-
ric (see Preliminaries for the definitions)

• Compute statistics over the tree metric

Although low-distortion embedding have been used ear-
lier for the purpose of stream computation (e.g., in [18]), to
our knowledge this is the first time that embeddings into
probabilistic tree metrics has been used for this purpose.

Discrete geometric space. As mentioned earlier, we as-
sume that the input points live in the discrete space {1 . . .∆}d.
Such assumption is not very common in computational ge-
ometry, where typically the coordinates of points are as-
sumed to be real. However, in practice our assumption is
always satisfied, due to the bounded precision of real-life
computation. Moreover, finite precision of the input is a
common assumption in the area of streaming computation,
since otherwise the notion of storage is not well defined (e.g.,
one cannot use discrete communication complexity tools to
prove lower bounds). Finally, we mention that our algo-
rithms can be easily adapted to work for data sets in �d in

4We mention that the idea of using greedy algorithms in the
data stream setting first appeared in [13].

374

Problem Approximation Update Est.

Bi-chromatic matching O(d log∆) (log∆ + d)O(1) O(1)

MST O(d log∆) (log∆ + d)O(1) O(1)

Matching O(d log∆) (log∆ + d)O(1) O(1)

Facility Location O(d log2 ∆) (log∆ + d)O(1) O(1)

k-median (local search) O(1) O(log∆ + 2O(d))O(1) O(∆d · (log∆ + 2O(d))O(1))

k-median (greedy) [1 + ε, O(log∆(log∆ + log(1/ε)/ε))] O(log∆ + 1/ε + 2O(d))O(1) O(log∆ + 1/ε + k)O(d)

Figure 1: Our results. The last two columns show the bounds for the update (i.e., processing the insertions
or deletion of a point) and estimation (i.e., returning the desired solution or quantity). The last algorithm
provides an [a, b]-approximation guarantee, that is the algorithm returns bk medians whose cost is at most a
times the minimum cost of any k medians. The estimation time O(1) means that the bound is subsumed by
the update times.

which the minimum inter-point distance is at least 1, and
the diameter is bounded by ∆.

Previous work. We are not aware of any prior results
on MST, MWM or bi-chromatic matching in a stream, even
in the insertions-only settings. The facility location problem
was considered earlier in the metric setting [21]. However,
the algorithms developed in that paper were using Ω(|F |)
space, which is linear in n in the worst case. Very recently,
Frahling and Sohler [12] (building on the techniques of [7,
10]) gave an algorithm for (1+ε)-approximation of the MST
cost in the insertions-only model.

The k-median problem for streaming data has been exten-
sively investigated for the insertions-only case. In particular,
low-storage O(1)-approximation algorithms are known [14,
6]. Very recently, Har-Peled and Mazumdar [15] discov-
ered a low-storage (1 + ε)-approximation algorithm for this
problem, for the case where the input points live in a low-
dimensional �d space.

For a survey on the previous work on streaming problems,
see [24].

2. PRELIMINARIES
To simplify expressions, we assume that log n = O(log∆).

As mentioned earlier, since all input points are distinct, this
assumption is automatically satisfied if d is a constant.

Embedding into trees. Let D,D′ be metrics on the
same set X. Then D′ dominates D if D(x, y) ≥ D′(x, y)
for all x, y ∈ X. Let X be a set, T1, T2, . . . , Tl be metrics
over that set, and α1, . . . , αk be non-negative reals summing
to 1. The convex combination of the Ti (with the coefficients

αi) is the metric D given by D(x, y) =
∑l

i=1 αiTi(x, y),
x, y ∈ X. A convex combination of metrics T1, . . . , Tk on X
can be thought of as a probabilistic metric (this concept was
suggested by Karp). Namely, D(x, y) is the expectation of
Ti(x, y) for i ∈ {1, 2, . . . , k} chosen at random according to
the distribution given by the αi.

We need also to define a hierarchically well-separated tree
(k-HST). Let T be a rooted tree with nonnegative weights of
edges such that (a) the distances from any node to all of its
children are the same, and (b) on each path from the root
to a leaf, the lengths of the consecutive edges decrease by
at least a certain factor k > 1. An HST (with parameter k)
is the metric space with the leaves of T as points and with

the shortest-path metrics over T .
Building on [3], Charikar et al [5] showed the following

Fact 1. Let P be a set of points from {1 . . .∆}d. Then
the metric over P induced by the lp norm can be embed-
ded into a convex combination of dominating 2-HST’s with
distortion O(d log∆).

In the following we briefly sketch how the above result
was obtained5. We will do it by presenting a randomized
procedure for generating a tree T ; the metric is then defined
by taking convex combination of all trees that can be gener-
ated by the procedure, with coefficients equal to the proper
probabilities.

Let Gi, i = 1 . . . log∆, be nested square grids over �d

with side length 2i−1, shifted by a vector chosen uniformly
at random from [0,∆]d. The nodes at the zero level, i.e.,
leaves, correspond to the points in P . The internal nodes
at any level i ≥ 1 correspond to the non-empty grid cells in
Gi. We also add a root node at level log∆ + 1. For any
node v at level i ≤ log∆− 1, its parent w in T is the node
corresponding to a grid cell in Gi+1 that contains the cell in
Gi (or the point in P) corresponding to v. For the nodes at
level log∆, the parent w is the root node. The weight of the
edge {v, w} is equal to 2i. One can verify that the metric
induced by T dominates the metric over P induced by any
lp norm, and that the distortion is as claimed.

3. MINIMUM SPANNING TREE
In this section we describe a O(d log∆)-approximation

stream algorithm for maintaining the weight of MST, that
uses only O(logO(1)(n +∆)) bits of storage. This is done in
two parts. First, we observe that the weight of a 2-HST T
generated via the procedure in preliminaries approximates
the weight of MST up to an (expected) factor of O(d log∆).
Then, we show how to maintain (approximately) the weight
of T in a stream fashion.

Approximating MST by an 2-HST. It is not difficult
to see that (by increasing the total weight by at most a
factor of 2) one can convert a 2-HST T into a tree T ′, such

5Strictly speaking, the latter paper employed a somewhat
different approach. We spare the reader the detailed account
of the differences.

375

that (a) the only nodes in T ′ are the leaves of T , i.e., the
points in P , and (b) the metric induced by T ′ dominates
the metric induced by T (when restricted to points in P).
If we replace the cost of all edges {v, w} in T ′ by the actual
distance ‖v − w‖p (forming T ′′) the weight of the tree is
only going to decrease, while the metric induced by T ′′ still
dominates the metric over P induced by ‖ · ‖p.

The tree T ′′ is a spanning tree of P . It suffices to bound
its weight. Since the weight of T ′′ is larger than the weight of
T by only a constant factor, it suffices to show the following:

Claim 1. The expected weight of T is at most C = O(d log∆)
times the weight of the MST T ∗.

Proof: The proof follows through the following sequence
of observations:

• For each edge {v, w} ∈ T ∗, the expected cost of the
corresponding path P (v, w) from v to w in T is at
most C times its cost in T ∗

• Thus, the expected total weight of all edges in E =
∪{v,w}∈T∗P (v, w) is at most C times the cost of T ∗

• Since the graph (P,E) is connected, E contains all
edges in T .

The claim follows.
✷

Approximating the weight of the HST. By the above
argument, it suffices to maintain (approximately) the weight
of the 2-HST T . Since we cannot maintain T explicitly
in small memory, we employ the following approach. Let
ni, i ≥ 1, be the number of non-empty grid cells in Gi

(or equivalently, the number of level-i nodes in T); we set
n0 = |P |.

Claim 2. The weight of T is equal to∑
i≥0

2ini

Therefore, it suffices to estimate the quantities ni for i =
1 . . . log∆. This is done as follows. For any p ∈ P , let Gi(p)
be the cell in Gi containing p. The problem of estimating
ni is now equivalent to the problem of estimating (up to
a constant factor) the number of distinct elements in the
stream consisting of all cells Gi(p), p ∈ P . By the result
of [11, 1], the latter task can be performed using O(log∆d)
bits. Therefore, the total space used by our algorithm is
O(d log2 ∆).

Theorem 1. There is a O(d log∆) -approximation algo-
rithm for computing the weight of MST of a stream of points
in �d under any lp norm. The algorithm uses O(d log2 ∆)
bits of storage.

4. MATCHING
In this section we describe a O(d log∆)-approximation

stream algorithm for maintaining the weight of the mini-
mum weight matching (MWM) of points in P , that uses

only O(logO(1)(n +∆)) bits of storage.
Consider a 2-HST T over P . By a similar argument as in

the case of MST, it suffices to estimate the cost of MWM
of all points in P with respect to the metric induced by T .
To this end, let mi be the number of grid cells in Gi that
contain an odd number of points in P .

Claim 3. The cost of MWM of P with respect to T is
equal to

n +
∑
i≥1

2imi

Proof: We start from the lower bound. The term n comes
from the cost of connecting leaves to the nodes at level 1.
Let v be any internal vertex in T with an odd number of
leaves in the subtree T (v) rooted at v. Let i ≥ 1 be the level
of v. One of the leaves of T (v) must be matched with a node
that does not belong to the subtree T (v). This will add 2i

to the total matching cost. Moreover, the costs induced by
different nodes v do not overlap. The fact follows.

The upper bound is showed using a similar idea. Consider
a matching of points in P created using the following greedy
approach. First, we match (as many as we can) points p, q,
such that the shortest path between p and q in T passes
only through levels 0 and 1. The matched nodes are re-
moved. Then we match points such that the shortest path
between them passes through levels up to 2. We continue
by increasing the upper bound on the level to 3, 4 etc. The
total number of yet-unmatched points at level i is equal to
mi. The bound follows. ✷

Thus, it suffices to estimate the values mi, for i = 1 . . . log∆.
For each i, this problem reduces to the following one: design
a data structure maintaining vector x[1 . . .M], that supports
the following operations:

• Update(i, c): perform x[i] = x[i] + c

• OC: report the number OC(x) of positions i such that
x[i] is odd

We call this an Odd-Count problem. In the following,
we give an O(1)-approximation6 algorithm for this prob-
lem that uses O(logM) = O(log∆) bits, and has constant
probability of success. By running O(log log∆) copies of
the procedure in parallel, we can reduce the probability of
failure to 1

2 log ∆
. This will ensure that the estimation of

all mi’s is correct with constant probability. Overall, this
will result in a O(d log∆)-approximation algorithm for the
MWM estimation that uses O(d log2 ∆ · log log∆) bits.

In order to solve Odd-Count, we show how to solve
its (approximate) decision version. The latter problem is
parametrized by T ∈ {1 . . . n}. An algorithm solves that
problem if the following two conditions are satisfied:

1. If OC(x) > T , then the algorithm outputs YES with
probability > 1/3

2. If OC(x) < T/10, then the algorithm outputs YES
with probability < 1/10

Below show how to solve this problem using only one bit
of storage. To be more exact, we will also use O(logM) =
O(d log∆) bits of randomness that needs to be stored. How-
ever, the same randomness can be reused for each of the
O(log2 ∆) instances of problem, and thus the total storage
bound remains unchanged.

The algorithm that solves the decision version of Odd-
Count is as follows:

6We mention that by using more careful analysis, one can
obtain a (1 + ε)-approximation algorithm for the problem.
The storage would increase by a factor of O(1/ε2).

376

• To initiate, choose a random set R ⊂ {1 . . .M}, such
that each i ∈ {1 . . .M} belongs to R with probability
1/T . Also, set s = 0

• To perform Update(i, c): if i ∈ R, then s = s +
c mod 2

• To determine OC(x): if s = 1, answer YES; otherwise
answer NO

Clearly, the above algorithm uses only one bit of random
access storage. Although it appears to use M bits of ran-
domness as well, they can be generating via pseudorandom
generator that uses only O(logM) truly random bits, as de-
scribed in [18].

Claim 4. The above algorithm satisfies the conditions (1)
and (2) of the decision version of the Odd-Count problem.

Proof: Let m = OC(x). Firstly, we consider condition
(2). If m < T/10, then the probability that any of the m
odd-count elements belongs to R is at most T/10 · 1/T =
1/10. In the complementary case, the algorithm will output
NO. Thus condition (2) is satisfied.

To analyze (1), observe that, without loss of generality,
we can assume that each element in {1 . . .M} occurs either
1 or 0 times in S; this is due to the fact that the behavior
of the algorithm depends only on the parity of the element
occurrences, not the actual number. The analysis then can
be completed by performing calculations identical to those
given in [20] in proof of Lemma 1, where they were used to
analyze the dimensionality reduction algorithm in a Ham-
ming cube. ✷

Theorem 2. There is a O(d log∆) -approximation algo-
rithm for computing the weight of minimum weight matching
of a stream of points in �d under any lp norm. The algo-
rithm uses O(d log2 ∆ log log∆) bits of storage.

5. FACILITY LOCATION
In this section we describe a O(d log2 ∆)-approximation

stream algorithm for maintaining the cost an optimal facility
location solution to points in P , that uses only O(logO(1)(n+
∆)) bits of storage.

As before, we focus on showing how to solve this problem
in metrics induced by 2-HST’s, and then describe how to
implement that algorithm in a stream fashion. Let T be
a 2-HST. We will assume that F can contain not only the
leaves but also the internal nodes of T ; this changes the cost
by at most a factor of 2.

Let Ti be the set of nodes of T at level i. Let |T (v)| be
the number of leaves of the subtree T (v) of T rooted at v.
Our algorithm relies on the following claim.

Claim 5. Let C be the minimum facility location cost,
and let

Q =

log ∆∑
i=1

∑
v∈Ti

min(|T (v)|2i, f)

Then C ≤ Q + f ≤ C log∆ + f

Proof: We start from proving the first inequality, by con-
structing a set F that has the cost at most Q + f . The
facilities are placed as follows:

• One facility is placed at the root

• For each node v ∈ Ti, if |T (v)|2i ≥ f , then place one
facility at v

The cost of the solution is as claimed.
To show the second inequality, it suffices to show that for

each level i ∑
v∈Ti

min(|T (v)|2i, f) ≤ C

Let F be the facility set inducing cost C. Consider any node
v ∈ Ti. If T (v) contains an element from F , then it adds f to
the total cost. Otherwise, if T (v) does not contain a facility,
then all |T (v)| nodes must connect to a facility outside of
T (v), which induces a cost of at least 2i|T (v)|.

✷.
Thus, in order to estimate the optimal cost C, it suffices

to estimate the quantity Q. This can be done by solving
log∆ instances of the following Bounded-Count problem.
The goal of the problem is to design a data structure that
maintains a set S of pairs (i, j), where i ∈ {1 . . .M}, j ∈
{1 . . .M ′}, under insertions and deletions. It is assumed
that at any time, there can be at most one pair (i, j) ∈ S
with a given value of j. Let cS(i) be the number of pairs
(i, j) ∈ S. The data structure needs to support the following
operations:

• Add(i, j): adds (i, j) to S

• Remove(i, j): removes (i, j) from S

• BC: report the number BC(S) =
∑

i min(cS(i), T),
for an input parameter T

The data structure for facility location invokes the Bounded
Count data structure by performing addition and removal
of pairs (c, p), where p ∈ {1 . . .∆d} is a point added to or re-
moved from P , and c is the grid cell (at a proper level) that p
belongs to. Note that, to satisfy the constraints of Bounded
Count, it is crucial that all points in P are unique, i.e., there
are no duplicates in P .

We will give an approximation algorithm for this problem.
To this end, observe first that we can assume without loss
of generality that BC(S) ≥ T . The reason for that is as
follows. As long as n ≤ T , we have BC(S) = n, and thus the
problem can be solved exactly. Once n > T , then BC(S) ≥
T .

In what follows we focus on the case BC(S) ≥ T . The
problem is then solved (approximately) by the following al-
gorithm. Let h : {1 . . .M ′} → {1 . . . T} be a random hash
function, i.e., such that all values of h(i) are independently
chosen from {1 . . . T}. As in the previous section, the ran-
domness (and storage) needed to create h can be reduced
by using pseudorandom generator, as in [18].

Our data structure uses another data structure (that we
call DE) for maintaining the number of distinct elements in a
stream, under insertions and deletions. Our implementation
is as follows:

• To perform Add(i, j): if h(j) = 0, add i to DE

• To perform Remove(i, j): if h(j) = 0, remove i from
DE

377

• To estimate BC(S): invoke DE to estimate the num-
ber K of distinct elements, and output T · K as an
estimation of BC(S).

The algorithm clearly can be implemented to use only
O(logM) space, if we do not count the random bits required
by h The pseudorandom generator needed to construct h
requires additional O(logM ·logM) bits of space. It remains
to show that T · K is a good estimator of BC(S). For this
purpose, we show the following.

Claim 6. Let p(k) = 1−(1−1/T)k be the probability that,
given k elements, if we remove each of them independently
with probability 1− 1/T , then at least one element remains.
Then

E[K] =
∑

i

p(cS(i))

Claim 7. For any k ≥ 0, we have

min(k, T)/2 ≤ Tp(k) ≤ min(k, T)

Proof: The second inequality follows from that p(k) ≤ 1,
and an easy “union bound” inequality p(k) ≤ k/T . For
the first inequality, we first observe that p(k) is concave for
k ≥ 0. Moreover, p(0) = 0 and p(T) = 1 − (1 − 1/T)T >
1 − 1/e > 1/2. Thus, the graph of p(k) lies above the line
from (0, 0) to (T, 1/2). ✷.

From the last two claims, it follows that it suffices to show
that K is a good estimator of E[K], i.e., that with constant
probability K is within constant factor away from E[K].
For this purpose, we will bound the variance V (K). As long

as
√

V (K) = O(E[K]), using standard sampling techniques
(e.g., see [1]) guarantees that with constant probability K
will estimate E[K] up to a constant factor. To this end,
observe that

V (K) =
∑

i

p(cS(i))− p(cS(i))
2 ≤

∑
a

p(cS(i)) = E[K]

If BC(S) ≥ T , then V (K) = Ω(1). In this case,
√

V (K) =
O(E[K]), and thus the above algorithm estimates E[K] (and
thus BC(S)) up to a constant factor with constant proba-
bility.

Theorem 3. There is a O(d log2 ∆) -approximation algo-
rithm for computing the minimum facility location cost for
a stream of points in �d under any lp norm. The algorithm
uses O(d2 log2 ∆) bits of storage.

6. K-MEDIAN
For simplicity we focus on the case d = 2, that is, the

input points live in a discrete plane. The algorithms easily
generalize to higher dimensions.

6.1 Tools
Exclusive Count. Our first tool is a low-space data

structure that solve the (1 + ε)-approximate Exclusive-
Count (XCount) problem. The data structure maintains
a vector x[1 . . .M], which is initially set to 0. It is required
to support the following operations:

• Update(i, c): perform x[i] = x[i] + c

• XCount(Q): return a value R such that (1− ε)XC ≤
R ≤ XC, where XC = ‖x‖1 − ‖x|Q‖1.

We will parametrize the data structure by t; the result-
ing data structure XCount(t) assumes that |Q| ≤ t for all
XCount queries. In addition, we require that x ≥ 0 at all
times.

Our solution to this problem uses hashing technique akin
to Min-Count sketches of [9]. It consists of:

• A pair-wise independent hash function h : {1 . . .M} →
{1 . . . l}, for l = 2t(1 + 1/ε)

• An array A[1 . . . l], initialized to 0

The operations are implemented as follows:

• Update(i, c): we perform A[h(i)] = A[h(i)] + c

• XCount(Q): return R =
∑

i/∈h(Q) A[i]

Lemma 1. Any XCount query reports a correct (approx-
imate) value with probability at least 1/2.

Proof: Clearly R ≤ XC. Moreover, XC = R + b, where
b =

∑
p/∈Q,h(p)∈h(Q) xp. We have E[b] ≤ ε/2 · XC. By

Markov inequality we have Pr[b > 2E[b] = εXC] ≤ 1/2. ✷.

Median Cost Evaluation. Our main tool is the Median
Cost Evaluation (MediEval) data structure. The data struc-
ture maintains a set P ⊂ U = {1 . . .∆}2, under addition
and deletion of points (as for the k-median). In addition, it
supports an operation Eval(Q), that returns C such that
C = (1±O(ε))C(Q,P). The data structure is parametrized
by l; the resulting data structure MediEval(l) assumes that
|Q| ≤ l for all Eval queries.

The data structure is implemented as follows. We define
Gi to be a square grid imposed on U , with side length ε/

√
2 ·

(1 + ε)i. We use Gi(p) to denote a grid cell that contains
p, and Ci to denote the set of all cells of Gi. For any cell
c ∈ Ci, define ni(c) to be the number of points in P that
fall into c.

Our data structure maintains data structures XCi that
solve the XCount(t) problem for vectors ni. We set t =
Θ(l/ε2). Clearly, the Add/Delete operations on MediEval
structure naturally translate into operations on XCi’s.

We now show how to implement the Eval(Q) operation.
Let B(p, r) be the set of points in U with distance less than
r from p. Let B(Q, r) = ∪q∈QB(q, r). Let ri = (1 + ε)i,
for −∞ < i < ∞. Let i0 be such that r−i0 < ε. Note that
i0 = O(log(1/ε)/ε).

Observe that for any i

B(Q, ri) ⊂ Gi(B(Q, ri)) ⊂ B(Q, ri+1)

Note that |Gi(B(Q, ri))| = O(l/ε2) ≤ t. Let R̂i(Q) be
the value of XCount for Gi(B(Q, ri)), and let Ri(Q) be

the approximation of R̂i(Q) returned by XCi. Recall that

Ri(Q) ≥ (1− ε)R̂i(Q), and that

|P − B(Q, ri(1 + ε))| ≤ R̂i(Q) ≤ |P − B(Q, ri)|
Define Ĉ(Q,P) =

∑
−i0≤i≤log(2∆)(ri − ri−1)R̂i(Q).

Lemma 2. The quantity Ĉ(Q,P) provides a good approx-
imation of C(Q,P). That is

C(Q,P) = (1± O(ε))Ĉ(Q,P)

378

Proof: We will show the ≤ inequality, the other direction
is similar.

C(Q,P) =

∫ ∞

0

|P − B(Q, r)|dr

≤
∑

i

|P − B(Q, ri+1)|(ri+2 − ri+1)

≤ 1/(1− ε) ·
∑

i≥−i0

|P − B(Q, ri+1)|(ri+2 − ri+1)

≤ (1 + ε)2

1− ε
·

∑
i≥−i0

|P − B(Q, ri+1)|(ri − ri−1)

≤ (1 + ε)2

(1− ε)

∑
i≥−i0

R̂i(Q)(ri − ri−1)

=
(1 + ε)2

(1− ε)

∑
−i0≤i≤log(2∆)

R̂i(Q)(ri − ri−1)

✷

6.2 Algorithms
The MediEval data structure can be used in several ways

to construct a data structure for bi-criterion approximation
of the k-median.

Exhaustive Search. If we set the probability of fail-
ure of the data structure to 1

2∆2k , then, with probability
1/2, the data structure will correctly estimate the value of
C(Q,P) for any Q ⊂ {1 . . .∆}2. Thus, one can retrieve a
(1+ ε)-approximate solution to the k-median problem for P
by enumerating all sets Q and choosing the best one. This
takes time ∆O(k). Although the query time is prohibitively
expensive, this shows that, in principle, it is possible to get
(1 + ε)-approximate solution to the k-median problem in
small space.

Local search. In the paper [2], the authors showed the
following fact. Consider an algorithm that starts with ar-
bitrary set Q of size k. The algorithm proceeds via a se-
quence of steps. At any step, it enumerates all sets Q′ =
Q−{q}∪{p} for q ∈ Q, p /∈ Q. If C(Q′, P) < (1−α)C(Q,P),
then Q becomes Q′. The algorithm ends when there is no Q′

satisfying the above condition. Arya et al show that for the
case α = 0, the algorithm provides a 5-approximation. It is
not difficult to observe that even if α > 0, then the algorithm
provides a (5 + δ)-approximation for δ = δ(α, k) [22].

The above algorithm requires only an oracle that main-
tains the approximate value of C(Q,P) for given Q. This
is precisely what MediEval does. Thus, we obtain an algo-
rithm for (5+δ)-approximate k-median. Note that the time
needed to compute the k medians is proportional to |U |, i.e.,
is Ω(∆2).

Theorem 4. There is an O(1)-approximation algorithm
for the dynamic k-median problem on a stream, where the
input points live in {1 . . .∆}2. The algorithm uses space

O(k logO(1) ∆). The update time given a new point is O(k(log∆+

1/ε)O(1)). The time needed to report the solution is O(∆2k(log∆+

1/ε)O(1)).

Greedy algorithm. Instead of the local search, one can
apply the greedy approach. The greedy algorithm proceeds
in the following way. Initially, Q = ∅. Then, in each step,
it chooses q /∈ Q such that C(Q ∪ q, P) is the smallest, and

adds q to Q. Since the function C(Q) = C(Q,P) is super-
modular, the result of [25] implies that the resulting algo-
rithm constructs a set Q′ consisting of O(k log∆) medians
such that C(Q′, P) ≤ C(Q,P).

Again, we can use MediEval to implement the greedy
procedure. If we use Ĉ(·, ·) instead of C(·, ·), by the same ar-
gument we are guaranteed that C(Q′, P) ≤ (1+O(ε))C(Q,P).
This gives us a bicriterion [O(log∆), 1 + ε]-approximate al-
gorithm for the k-median problem. The time to construct
the medians is still Ω(∆2).

To obtain a faster algorithm, consider the formula for
Ĉ(P,Q). It consists of s = log∆ + O(log(1/ε)/ε) terms

of the form aiR̂i(Q) where ai = (ri − ri−1). By properly
setting the accuracy of the XCi data structure, we can
assume that R̂(Q) ≈ Ri(Q), i.e., that we can interchange
these terms without loss of correctness (note that accuracy
inversely polynomial in 1/ε + log∆ suffices). Assume that

there is a q∗ /∈ Q such that Ĉ(P,Q∪{q∗}) < (1−α)Ĉ(P,Q).
This implies that there exists i such that ti(Q) − ti(Q ∪
{q∗}) > α/s · Ĉ(P,Q). Our algorithm will search for q
such that ti(Q) − ti(Q ∪ {q}) ≥ 1

2
(ti(Q) − ti(Q ∪ {q∗})).

Ĉ(P,Q ∪ {q∗}) ≤ (1 − α/s)Ĉ(P,Q). This leads to a bi-
criterion [1+ ε, O(log∆(log∆+log(1/ε)/ε))]-approximation
algorithm.

The point q can be found as follows. For a cell c ∈ Gi,
let ni(c) be the number of points in P that belong to c. Let
B be a set of cells in Gi(B(q∗, ri))−Gi(B(Q, ri)). We have∑

c∈B ni(c) = ti(Q)− ti(Q ∪ {q∗}) = T . Let B′ ⊂ B be the

set of cells c such that ni(c) ≥ T
2|B| . Clearly,

∑
c∈B′ ni(c) ≥

T/2.
The algorithm proceeds by finding a set S of all cells c for

which ni(c) ≥ T
2|B| . Then, it enumerates all points q such

that Gi(B(q, ri)) intersects S, and returns q that maximizes∑
c∈S∩[Gi(B(q,ri))−Gi(B(Q,ri))]

ni(c). It follows that the re-

sulting point q satisfies the aforementioned constraints.
It remains to bound the space and time complexity of the

above procedure. The set S can be found in time and space
polynomial in (|S| + 1/ε + k + log∆) - it is a variant of a
heavy hitters problem, investigated e.g., in [9]. The size of
|S| is at most O(s/α) times O(1/ε2). Finally, the number of
possible sets Gi(B(q, ri)) that intersects S is polynomial as
well.

Theorem 5. There is a [1+ε, O(log∆(log∆+log(1/ε)/ε))]-
approximation algorithm for the dynamic k-median problem
on a stream, where the input points live in {1 . . .∆}2. The

algorithm uses space O((k + log∆ + 1/ε)O(1)). The update

time given a new point is O(k(log∆+ 1/ε)O(1))). The time

needed to report the solution is O(k + log∆ + 1/ε)O(1)

Acknowledgments: The author would like to thank
Graham Cormode, Sudipto Guha and Muthu Muthukrish-
nan, for helpful discussions.

7. REFERENCES
[1] N. Alon, Y. Matias, and M. Szegedy. The space

complexity of approximating the frequency moments.
Proceedings of the Symposium on Theory of
Computing, pages 20–29, 1996.

[2] V. Arya, N. Garg, R. Khandekar, A. Meyerson,
K. Munagala, and V. Pandit. Local search heuristics
for k-median and facility location problems.

379

Proceedings of the Symposium on Theory of
Computing, 2002.

[3] Y. Bartal. Probabilistic approximation of metric
spaces and its algorithmic applications. Proceedings of
the Symposium on Foundations of Computer Science,
1996.

[4] M. Charikar. Similarity estimation techniques from
rounding. Proceedings of the Symposium on Theory of
Computing, 2002.

[5] M. Charikar, C. Chekuri, A. Goel, S. Guha, and
S. Plotkin. Approximating a finite metric by a small
number of tree metrics. Proceedings of the Symposium
on Foundations of Computer Science, 1998.

[6] M. Charikar, L. O’Callaghan, and R. Panigrahy.
Better streaming algorithms for clustering problems.
Proceedings of the Symposium on Theory of
Computing, pages 30–39, 2003.

[7] B. Chazelle, R. Rubinfeld, and L. Trevisan.
Approximating the minimum spanning tree weight in
sublinear time. ICALP, 2001.

[8] G. Cormode, M. Datar, P. Indyk, and
S. Muthukrishnan. Comparing data streams using
hamming norms. Proceedings of the International
Conference on Very Large Databases (VLDB), 2002.

[9] G. Cormode and S. Muthukrishnan. Improved data
stream summaries: The count-min sketch and its
applications. DIMACS Tech Report, 2003.

[10] A. Czumaj and C. Sohler. Estimating the weight of
metric minimum spanning trees in sublinear-time.
Proceedings of the Symposium on Theory of
Computing, 2004.

[11] P. Flajolet and G. Martin. Probabilistic counting
algorithms for data base applications. Journal of
Computer and System Sciences, 31:182–209, 1985.

[12] G. Frahling and C. Sohler. Estimating the weight of
euclidean minimum spanning trees in data streams.
Manuscript, 2004.

[13] A. Gilbert, S. Guha, Y. Kotidis, P. Indyk,
M. Muthukrishnan, and M. Strauss. Fast, small-space
algorithms for approximate histogram maintenance.
Proceedings of the Symposium on Theory of
Computing, 2002.

[14] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. Proceedings of the
Symposium on Theory of Computing, 2001.

[15] S. Har-Peled and S. Mazumdar. Coresets for k-means
and k-medians and their applications. Proceedings of
the Symposium on Theory of Computing, 2004.

[16] J. M. Hellerstein, S. Madden, and W. Hong. The
sensor spectrum: technology, trends and requirements.
SIGMOD Record, December, 2003.

[17] M. Hoffman, S. Muthukrishnan, and R. Raman.
Location streams: Models and algorithms. manuscript,
2004.

[18] P. Indyk. Stable distributions, pseudorandom
generators, embeddings and data stream computation.
Proceedings of the Symposium on Foundations of
Computer Science, 2000.

[19] P. Indyk and N. Thaper. Fast color image retrieval via
embeddings. Workshop on Statistical and
Computational Theories of Vision (at ICCV), 2003.

[20] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient
search for approximate nearest neighbor in high
dimensional spaces. Proceedings of the Thirtieth ACM
Symposium on Theory of Computing, pages 614–623,
1998.

[21] Adam Meyerson. Online facility location. Proceedings
of the Symposium on Foundations of Computer
Science, pages 426–431, 2001.

[22] K. Munagala. Personal communication. 2003.

[23] J. I. Munro and M. S. Paterson. Selection and sorting
with limited storage. TCS, 12, 1980.

[24] S. Muthukrishnan. Data streams: Algorithms and
applications (invited talk at soda’03). Available at
http://athos.rutgers.edu/∼muthu/stream-1-1.ps, 2003.

[25] L. A. Wolsey. An analysis of the greedy algorithm for
the submodular set covering problem. Combinatorica,
2(4):385–393, 1982.

380

